Conserved Prosegment Residues Stabilize a Late-Stage Folding Transition State of Pepsin Independently of Ground States
نویسندگان
چکیده
The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding.
منابع مشابه
Evolutionary conservation in protein folding kinetics.
The sequence and structural conservation of folding transition states have been predicted on theoretical grounds. Using homologous sequence alignments of proteins previously characterized via coupled mutagenesis/kinetics studies, we tested these predictions experimentally. Only one of the six appropriately characterized proteins exhibits a statistically significant correlation between residues'...
متن کاملMechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin.
The gastric aspartic proteinases (pepsin A, pepsin B, gastricsin and chymosin) are synthesized in the gastric mucosa as inactive precursors, known as zymogens. The gastric zymogens each contain a prosegment (i.e. additional residues at the N-terminus of the active enzyme) that serves to stabilize the inactive form and prevent entry of the substrate to the active site. Upon ingestion of food, ea...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملComparison of solution structures and stabilities of native, partially unfolded and partially refolded pepsin.
A zymogen-derived protein, pepsin, appears to be incapable of folding to the native state without the presence of the prosegment. To better understand the nature of the irreversible denaturation of pepsin, the present study reports on the characterization of the stability and low-resolution tertiary and secondary structures of native, alkaline unfolded and acid refolded porcine pepsin. Through ...
متن کاملElectric-Field-Induced Triplet to Singlet Transition in Size-2 Trigonal Zigzag Graphene Nanoflake
Using Hartree-Fock Su-Sheriffer-Heeger (HF-SSH) model, we have studied the dependence of the energies of the ground (magnetic triplet state) and the first exited (nonmagnetic singlet state) states of the size-2 trigonal zigzag graphene nanoflake (size-2 NF) on the intensity of an external in plane static electric field at zero temperature. We identify a transition from the magnetic triplet stat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014